Lower bounds for monotone counting circuits

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Monotone Counting Circuits

A {+,×}-circuit counts a given multivariate polynomial f , if its values on 0-1 inputs are the same as those of f ; on other inputs the circuit may output arbitrary values. Such a circuit counts the number of monomials of f evaluated to 1 by a given 0-1 input vector (with multiplicities given by their coefficients). A circuit decides f if it has the same 0-1 roots as f . We first show that some...

متن کامل

Lower Bounds for Monotone Counting Cir uits

where ce ∈ N = {0, 1, 2, . . .}, and xi = 1. Produ ts ∏n i=1 x ei i are monomials of f ; we will often omit monomials whose oe ients ce are zero. The polynomial is multilinear, if ce = 0 for all e 6∈ {0, 1}n, and is homogeneous of degree d, if e1 + · · ·+ en = d for all e with ce 6= 0. A standard model of ompa t representation of su h polynomials (with nonnegative oe ients) is that of monotone ...

متن کامل

Depth Lower Bounds for Monotone Semi-Unbounded Fan-in Circuits

The depth hierarchy results for monotone circuits of Raz and McKenzie [5] are extended to the case of monotone circuits of semiunbounded fan-in. It follows that the inclusions NC ⊆ SAC ⊆ AC are proper in the monotone setting, for every i ≥ 1. Mathematics Subject Classification. 68Q17, 68Q15.

متن کامل

On monotone circuits with local oracles and clique lower bounds

We investigate monotone circuits with local oracles [Krajíček, 2016], i.e., circuits containing additional inputs yi = yi(~x) that can perform unstructured computations on the input string ~x. Let μ ∈ [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(~x), and Un,k,Vn,k ⊆ {0,1}m be the set of k-cliques and the set of complete (k−1)-par...

متن کامل

Superpolynomial Lower Bounds for Monotone Span Programs

In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paley-type bipartite graphs via Weil’s character sum estimates. We prove an n n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2016

ISSN: 0166-218X

DOI: 10.1016/j.dam.2016.04.024